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Abstract

This paper presents a tutorial on the use of model identification tech-

niques for the identification of propulsion system models. These models are

important for control design, simulation, parameter estimation, and fault

detection. Propulsion system identification is defined in the context of the

classical description of identification as a four step process that is unique

because of special considerations of data and error sources. Propulsion

system models are described along with the dependence of system operation

on the environment. Propulsion system simulation approaches are discussed

as well as approaches to propulsion system identification with examples for

both air breathing and rocket systems.

I. Introduction

The purpose of this paper is to present a tutorial on the use of model

identification techniques for the identification of propulsion system models.

The applicat;on of these techniques to identify models is important for several

reasons. The simplified propulsion models obtained from ;dentificat|on are

reql,lred for the design of propulsion control systems. Also, the identified

models are often used for output estimation of important engine measure-

ments for model based fault detection schemes. Third, identified models are

often qt,ite useful for real-time shnulation of propulsion systems. Real-time

simulation is required to evaluate hardware implementations of propulsion

control systems. Finally, it is often important to apply identification tech-

niques to obtain estimates of important engine parameters such as efficienc;es

or component performance parameters. These identified parameters can be

used to improve control performance or to gain a better understanding of

engine operation.

*Summer Faculty Fellow at NASA Lewis Research Center.



Identification is a four step process. First, system data is obtained

from the system to be identified. Second, a model structure is identified.

Third, model parameters which exist with the previously defined structure are

identified. Finally, the model is verified by predicting known system behavior

by comparing model predictions to system data not used in step three. This

process applies to the identification of any system. What makes the propul-

sion application unique are the data and error sources associated with propul-

sion systems.

There are two data sources used to identify propulsion system models,

an engine simulation and measurements taken from a real engine. The engine

simulation is typically, a very detailed, highly nonlinear, digital simulation of

equations which represent first principle models of the basic components of

the engine. The sources of error for the simulation are limited to the precision

of the computer(not a factor) and the modeling simplifications t, sed in the

development of the simulation. These simplifications include a finite number

of lumped parameter, control volumes which are used to model what is truly a

distributed process. The second data source was data obtained by measure-

ment from a real engine. Sources of error in this case include errors in making

the measurements, measurement noise, limited amounts of data(testing is

expensive), and limited experiment deslgn(data is often only available from

experiments performed for another purpose). Also, the data obtained is

almost always obtained from an engine with a control. Thus, the data

obtained are closed-loop data which requires that the identification techniques

applied must be able to eliminate the effect of the control. This process is

never perfect and results in some additional error to the identified models.

The remainder of this paper will describe how propulsion systems are

modeled in general. Then some specific model forms which admit the applica-

tion of identification techniques will be discussed. Next, some successful

applications of identification to propulsion systems will be described. Finally,

the paper will close with some concluding remarks.

II. Propulsion System Models

Identification techniques have been applied to a wide variety of propul-

sion systems. To focus the discussion, a typical airbreathing engine shown in

Figure I is used as an

example. Most propulsion systems have some of the elements embodied in

this particular system, rotating turbomachinery, combustion processes,

variable geometry, and multiple flow paths for the working fluid. For the

engine of Figure I the major compo,ents: inlet, fan, etc. are labeled and the

various numerical station designations are given.



As mentionedin the preceding section, a detailed, nonlinear simulation

of the engine usually exists which predicts engine behavior. This is of the

manufacturer's guaranteed specification of engine performance and is there-

fore, an accurate representation. Identification can be accomplished using

data from this simulation. It will be helpful to understand how these slmula-

tions are created from physical models to further understand how identified

models are generated.

Modeling the behavior of this engine will require a description of the

environment in which the engine operates, first principles based equational

descriptions of internal engine characteristics, pressures, temperatures, flow

rates, and turbomachlnery angular velocities (rotor speeds) and specific

performance information associated with each component. Each of these

three modeling elements is discussed below. A more complete description of

engine modeling and simulation is given by Szuch 1.

Engine performance is dependent on its environment, specifically the

temperature, pressure and velocity of the air entering the inlet. The ambient

pressure of the air surrounding the engine is also important in finding the

thrust developed by the engine. Since the engine exists in an airplane, the

flight envelope of the plane is req,ired. This envelope is specified in terms of

the altitude and Mach number of the airplane. An example flight envelope is

shown in Figure 2 along with the variation in temperature and pressure of the

air for the envelope. By specifying a flight condition, i.e. altitude and Mach

No., the corresponding engine inlet temperature and pressure can be specified.

Although engines are actually distributed processes, they are modeled

using lumped parameter approximations to the equations of continuity of

mass and energy. A schematic of the lumped control vohJmes (mixing

volumes) chosen for the engine of Figure I is shown in Figure 3. Typical

equations for the compressor mixing volume are

dw
- .',,,- (1)

dt

dt

where w dot is mass flow rate, u is internal energy, and h is enthalpy.

The most important variables in defining engine behavior are the rotor

speeds. Typical dynamic behaviors for an engine can vary up to four times

with changes in engine speed as shown in Figure 4.
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To complete the model, these equations are combined with perfor-

mance information for each of the component blocks of Figure 3. One exam-

ple of component performance is the compressor performance map of Figure 5

which shows the compressor's pressure ratio versus its flow for different

operating speeds.

It is clear from the preceding discussion that when information from

each remaining volume and component is combined that the resultant model

will be of substantial complexity. This complexity results in reasonable

accuracy. However, this complexity makes this particular fort, of the model

difficult to use for control design and analysis.

To be usehd for control design and analysis the modeling approach

should admit a compact and general equational representation. Additionally,

the representation should contain enough mathematical structures to allow

analysis. Three generalized equational representations have been used to

model engines. These model forms are called nonlinear, bilinear, and

pseudolinear.

The first form, called the nonlinear model, is given as

= (3)

y-- (4)

where u represents independent variables, fuel flow and variable geometry

settings, e.g.; x represents state variables, temperature, pressure and speeds,

e.g.; y represents engine outputs, thrust, stall margin, etc.; and _ are tile envl-

ronmental variables, inlet pressure and temperature. The functions f and g are

nonlinear vector functions that represent the full equation set typified by

equations (1) and (2). The model of equations (3) and (4) lacks the structure

necessary to allow control design.

A second model representation, called the bilinear model, is given as

-- ÷ g(x)u (s)

This model retains much of the generality of the full nonlinear model but

brings in additional structure by assuming that the independent (control)

variables enter the process linearly. This model form has seen only limited use
in the design and analysis of engine controls 2.



The third model type is the pseudollnearmodelgivenas

= A(y,4,)x + B(y,4,)U (6)

y : c(y,4,)x _-O(y,,l,)u (1)

Here A, B, C, and D are matrices which are determined at the operating

conditions defined by y and _. This representation has seen the most use due

to the availability of linear design and analysis techniques. The next section

will discuss how the system matrices of equations (6) and (7) could be deter-
mined.

IlL Identified Modell by Lineerlzation

Due to the availability of an engine slmtllation model, often the sim-

plest and most straightforward identification approach is to determine A, B,

C, and D by llnearlzatlon of the equations represented by (3) and (4). This

can be accomplished computationally as follows.

. Individually perturb state variables while holding constant the

remaining state variables, u and ¢_. In equation form

A_j Af_- (x0,u0,_0) (e)
Ax/

,

c_j= z_-_(Xo,Uo,_o) (9)

Once A and C are known then u can be perturbed and a steady-

state match enforced by calculating B and D to satisfy

Ax = (-A-' B)Au (tO)

_y- C(-A 1B) Au = D_u (11)

An important consideration in this process is the size of the perturbations,

_x i, used. They need to be large enough to significantly excite the equations
for-computational accuracy, yet, small enough to insure a region of linearity.

Often multiple sizes are used and the results compared for consistency.

Additionally, both positive and negative perturbations are used and the results

averaged to remove nonlinear effects. The linearization approach is ubiquitous
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throughout the propulsion controls design community.

IV. Closed Loop Identification

A typical engine control design cycle consists of developing a dynamic

engine simulation from steady-state component performance data, designing a

control based upon this simulation, and then testing and modifying the control

in an engine test cell to meet performance reqt, irements. This design cycle

has been successful for state-of-the-art engines. However, for more advanced

multivarlable engines that Exhibit strong variable interactions, this procedure

will resnlt in substantial trial and error modification of the control during the

testing phase. One method to automate the design process and reduce

control modification testing and development cost would be to identify

accurate dynamic models directly from the closed loop test data. These

identified models would then be used in conjunction with a synthesis proce-

dure to systematica311y refine the control. Recent advances in closed loop
identlfiabJlity (Ref. ) present a methodology for this direct identification of

engine model dynamics from closed loop test data. This section describes the

application of the Instrumental Variable/Approxlmate Maximum Likelihood

(IV/AML) identification method (Ref. 4) to simulated and actual closed loop

F100 engine data (Ref. S). This study was undertaken to determine if useful

dynamic engine models could be identified directly from closed loop engine
test data.

The IV/AML method is applied to both simulated and actual closed

loop test multiple input data. The IV/AML method is an output error identifi-

cation method and was implemented in a combined iterative/recursive form.

The test data studied in this report contains both measurement and process

noise. The available closed loop engine test data records are each comprised

of only 200 sample points. Since this is a relatively low number of sample

points per operating record, the IV/AML method was selected for use because

Monte Carlo tests have shown the method to exhibit reasonable convergence

for a small number of samples (Ref. 4). The IV/AML approach is shown in

Figure 6. A complete description of the Refined IV/AML method is given in
Ref. 4.

A. Engine Model

The Pratt and Whitney F100 engine (Ref. 5) is a twin-spool low-
bypass ratio after-burning turbofan. Four controlled variables are considered:

main fuel flow (WF), exhaust nozzle area (A J), compressor (fan) inlet variable

guide vanes (ClVV), and the rear compressor variable guide vanes (RCVV).

Three output variables are considered: engine fan speed (N1), engine com-

pressor speed (N2), and augmenter entrance pressure (PT6). The engine



speeds are indicative of the dynamic response of the engine while PT6 is
closely related to engine thrust. Globally the engine is modeled as

/_=I(x,u,AL T,MN) (12)
y=O(x,u,AL T,MN)

where x is the state vector, u is the control vector and y is the output vector.
Engine operation is also dependent upon environmental variables altitude
(ALT), and Mach number (MN). An engine operating point is defined as

f_xwusg,AL T,MN)=O

g(x.,u.,AL T,MN) =y.
(]3)

A third order behavioral model relating the engine outputs to the primary
control variable8 WF and AJ was developed in Ref. 6 and is given as

0 -1/_ 2 x +

o c.. -l/...j

u (14)

Thl. model represents linearized behavior in a small region about an operating
point. Including CIVV and RCVV and writing in matrix form, the behavioral
model becomes

(I + AlZ-1)Xk = elz-'u k (1IS)

B. Test Data Applicatlon

The FIO0 engine was tested in the Lewis Research Center altitude test

facility to evaluate tile F100 Multivariable Control (MVC) law (Refs. 4 and 5).
During the same test period the "Bill of Material" (BOM) control was also
evaluated as a baseline/backup control model. Thus, there are a variety of
closed loop operating records obtained throughout the flight envelope with a
number of different power input requests. The two multivarlable data sets



used in this report were recorded at an ALT = 10,000 ft, MN = 0.9 condition

as the power request was varied (step change) in a small (hopefully linear)

range about intermediate engine power. One set corresponds to an MVC

control test, the other to a BOM test. Data were sampled at T = 0.05 sec for

a 10-second transient, which yields K -- 200 points for each record in the data

sets.

The BOM and MVC control structures, linearlzed at an operating point

correspond to the structure of Figure 7. The reference point and control

blocks are different however, for the two controls. The structure of Fig,re 7 is

exactly the structure given in Ref. 2, 3. Since each control structure is fixed

at a given operating point, strong system identifiability can be guaranteed if

Or in other words, if

det_L] , 0 (17)

The BOM and MVC reference point schedules do exhibit the characteristic of

(17), therefore, a direct identification approach, such as IV/AML, can be suc-

cessfully applied to the closed loop input/output data sets recorded in the

Lewis test facility.

Sensor instrumentation dynamics for the input and output variables of

interest are beyond the 20 radians/sec frequency range. Thus, sensor dynam-

ics were initially ignored in the identification tests. Ambient noise statistics

were obtained during steady-state engine operation. Standard deviations were

calculated at the operating point for the sensed values. Signal to noise ratios

(SNR's) were estimated based upon these ambient noise levels and the

deviations of the various signals from their operating point values. In each

case the SNR's show the level of noise to be small relative to the signal.

Therefore, the identification results should be quite consistent and accurate.

Normalized WF from the BOM and MVC control tests is shown in

Figure 8. This is typical of the engine inputs in these tests. Power spectrum

analysis of these inputs shows a slightly higher frequency component in the

MVC inputs. Although more total power is contained in the BOM inputs,

most of the power is concentrated below 6 radians/sec.

The control inputs of Figure 8 were used in conjunction with a model
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identified from simulation data (called model 1) to predict engine output.

Comparing the predicted outputs of model 1 with the actual outputs, it was

found that model I was unacceptable. No output was predicted well for

either BOM or MVC data. Slight discrepancies between simulation and test

data cannot account for large discrepancies between predicted and actual

outputs.

To investigate this further the IV/AML method was applied directly to

the MVC and BOM closed loop test data producing models 2 and 3, respec-

tively. Model I was used as a starting point. Model 3 accurately reproduces

the data, from which it was generated (BOM). Model 2 results are similar.

In fact, Table I shows the residual error of all the outputs for models 1,

2 and 3 to be less than I percent. However, comparing parameters for

models 1, 2 and 3 (see Table I) it can be seen that while A 1 remains essen-

tially unchanged, elements of 131 do change substantially. This implies a
slightly overparameterlzed model structure which does account for the inabili-

ty of model I to predict BOM and MVC engine data. This is true since an

overparameterlzed model becomes specialized to the data from which it was

determined. To determine which elements should be eliminated to remove the

overparameterization, the following procedure was adopted 7.

First, a reasonably accurate initial model is assumed. In this case,

models 2 and 3 were used. An initial covarlance matrix

Po:diag(Po_ (lS)

is chosen where the Pol are small to indicate small uncertainty in the model

parameters. In the engine example

Po = 10-7/ (19)

was used. Next, the IV/AML method is applied for only a single iteration to

data for which the model is overparameterlzed. The method now will be most

sensitive to removing the uncertainty inherent in the extra parameters. Now,

the diagonal elements of P1 which correspond to accurate parameters will not

change. However, the diagonal element, of PI' PlI' which correspond to extra
parameters will change significantly. Thus, if

where _ is a positive threshold, the corresponding parameter a! can be set to



zero. The threshold was selected as

(20)

--0.05 (21)

for the engine data.

Three elements of PI satisfied (20) for both MVC and BOM data. The

corresponding parameters were eliminated and this new structure applied to

simulation data. The resultant IV/AML identified model is given as model 4

in Table I. A comparison of average fit error is quite comparable to model ]

with full 131 and, in fact, shows improvement in the PT6 comparison.

Note that the eigenvah,e associated with PT6 in model 4 represents a

frequency of approximately 25 radians/sec which is slightly greater than the

20 radlans/sec natural frequency of the PT6 sensor. Obviously, the PT6

sensor dynamics can no longer be completely ignored in the interpretation of

the results. Additionally, since one mode models the sensor dy,lamics, a

second mode may be required to model the PT6 engine mode. This was not

pursued at this time however.

When used to predict BOM and MVC output data, model 4 was still

unsatisfactory. Model4dld predict N1(MVC), N2(MVC), and N2(BOM).

However, N1(13OM) and especially PT6 for both data sets were not predicted

well. The error in PT6 is somewhat expected from sensor and input band-

width considerations. The N1(13OM) error was not expected however.

Figure 9 compares predicted NI data using model 4 to actual closed loop

N|(BOM) data. Model 4 predicted N1 grossly follows the trend of the

simulated data. Thug, it appears that the dynamic portion of model 4 is

correct. However, there must then be large discrepancies in some of the

model 4 gain terms. These discrepancies are somewhat perplexing since

model 4 predicted NI(MVC) but not NI(BOM).

Recall, however, that the BOM inputs are larger in magnitude than the

MVC inputs, and that model 4 represents linearized dynamics. Thus, some

nonlinear effects may be inherent in the BOM data. This explanation is not

entirely satisfactory since N2(BOM) and N2(MVC) were both predicted.

Further work to resolve this problem is required. The IV/AML identification

method was again utilized to further refine the model parameters for the

structure of model 4 using the two sets of experimental closed loop data. The

10



p,Jrpose of this final iteration is to identify a single model that can accurately

predict both sets of engine test data and, hopefully, simulation data as well.

Again model 4 was used as an initial condition in the IV/AML method

applied to the BOM and MVC data. Models 5 and 6 of Table I resulted.

Both models 5 and 6 fit their respective data sets quite well. Similar compari-

sons to MVC data were obtained using model 6. More importantly, when the

BOM model 5 is used to predict the MVC data, the comparison given in

Figure 10 is quite reasonable. Thus, model 5 (or equivalently model 6) repre-

sents a model which predicts a class of inputs and can be used with confi-

dence in a control design procedure.

V. Identification by Canonical Forms

In this section the development of an accurate representation of the
dynamic behavior of the Space Shuttle Main Engine (SSME) is presented.

The model is obtained by identification of linearized dynamic models of the

SSME from a nonlinear dynamic simulation. The identified linearized models

are valid in limited response regions about several operating points corre-

spondin g to the different power levels. The models are useful for real time

estimation and fault detection as well as open loop engine dynamic studies

and closed loop control analysis using a user generated control law.

89
A multivariable identification and a minimal realization technique ,

is used to identify these models in c_-canonical form. Also, the development

includes an technique for piecewise linear systems wlth static nonlinear gains,

which is used in modeling the dynamics of the SSME.

Initially a brief description of the SSME is given. This is followed by a

description of the identification scheme and the model used. Finally, results

obtained from the identified models are compared with the results obtained

from the nonlinear simulation for the same input.

A. The Space Shuttle Main Engine.

Different aspects of the SSME as well as its principles of operation are

described in the literature 10. For the sake of completeness a brief descrip-

tion of the main engine is also given below.

The space shuttle orbiter main propulsion system is composed of three

main engines. The engines use liquid oxygen and liquid hydrogen propellants
carried in an external tank attached to the orbiter. To understand the overall

flow of fuel and oxidizer to produce the thrust, a schematic diagram of the
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propellant flows and the control valves is shown in Figure 11.

The two high pressure turbines are driven by a fuel turbine preburner

and an oxidizer turbine preburner, each of which produces hot gas. The low

pressure turbines are driven by the high pressure pump flows. The fuel from

the high preset, re fuel pump (HPFP) goes through the main fuel valve (MFV).

After the MFV, the [low divides into fixed nozzle cooling flow, main chamber

cooling flow, and coolant control valve (CCV) flow. Heat is absorbed from

the combustion chamber and nozzle. The fixed nozzle cooling and the coolant

control valve flows then recombine and travel to the preburners where com-

bustion and pressure are controlled by the fuel preburner oxidizer valve

(FPOV) and the oxidizer preburner oxidizer valve (OPOV). Main chamber

coolant flow is used to drive the low pressure fuel turbopump.

The existing control system of the SSME uses five valves; FPOV,

OPOV, MFV, MOV, and CCV. They control the mixture ratio and the main

chamber pressure which is correlated with the thrust. Open and closed loop

control of these valves are used to accomplish the SSME mission. For the

purpose of model identification of the open loop system, the rotary motion of

the five valves (/_oPov' /_FPOV' /_CCV' _rvlov, _MFV) is used as input. The

outputs are the chamber pressure, PC' and the mixture ratio, MR.

In a prevlol,s study 10 it was shown that #ccv' #MOV' and _MFV valve

rotary motions are essentially decoupled from the outputs during the main

stage of operation. In this study, only the valve rotary motions, #FPOV and

/_OPOV' are used as the inputs of the open loop system.

B. System Identification

The steps used in identification of the SSME consist of: (1) selection

of a driving signal with persistent excitations, (2) selection of a model, (3)

parameter and structure estimation, and (4) model verification. These steps
are followed for the identiflcation of the SSME and are outlined below.

Selection of a Driving Signal

Selection of an appropriate input signal is an important step in identifi-

cation problems. A basic criterion for this selection is that the input/output

data should be informative enough to discriminate between different models

among the class of models being considered. Without this discrimination

there is no guarantee that the obtained para,neters are the true parameters of

the system. This criterion can be expressed mathematically in terms of the

covarlance matrices of the input signals and the order of the system being
identified 11. Uncorrelated pseudo random binary sequences which are used

12



in this study are examples of such input signals which can be used for design-

ing an informative experiment.

Pseudo random binary sequences (PRBS) are selected as the input

perturbation signals to excite the system because of their convenience and
.... lz

su,tab,hty for s,milar applications . Two uncorrelated sequences, which

satisfy the requirement of persistent excitation, are used for OPOV and FPOV

inputs. The sequences have a clock time of 0.04 sec and a length of 127.

This corresponds to a maximum frequency on 78.5 rad/sec (12.5 Hz), a

minimum frequency of 1.24 rad/sec (0.2 Hz) and a signal duration of 5.08 sec.

Selection of a Mathematical Model

It is assumed that the nonlinear dynamics of the SSME can be de-

scribed by discrete, linearized equations at a nominal operating condition:

_x(k + 1) = A _x(k) + B _u(k) (22)

_y(k) = C _x(k) (23)

where )x, _u, and _y are the deviations of the state, the input, and the

output vectors about the nominal operati,lg condition. It is assumed that the

system described by equations (22) and (23) is stable and observable and the
C matrix has full row rank.

Parameterlzation of A, B, and C is an important issue for identification

of multi-input multl-output (MIMO) systems since they admit more than one

parametrization depending on their observability indices. Thus, in order to

obtain a minimal parametrization for MIMO systems, the structure of the

system i.e., the observability indices related to each output must be deter-

mined. Recently 8, the notion of output injection was employed to obtain a

new canonical form for a special class of observable systems. Through this

canonical form, a strt, cture and parameter identification algorithm was

developed for a restricted class of systems. This technique was extended to

the class of all minimal systems and the output injection was constrained by

an extra condition to guarantee the uniqueness of the parametrization g.

When the system of (22) and (23) is realized in c_-canonical form, i.e., the
following relations hold:

13



c: [0.'] (2,)

A = Ao+ KHC,withA_= 0 (2S)

- A'" (26)
HC)r, o = 0

(2T)
(HC)rlAoKcj = 0, for t_l _> J_J and k < #1 - /_J

Here the subscripts r I and c] denote the i'th row and j'th column respec-
tively. Superscripts indicate exponentiation. The structure matrix A o is

lower left triangular and consists of zeros and ones only and is determined by

the observabillty indices, /t! where ; associates /z I with the i'th output and

# -- max {ILl}. The matrix K is a deadbeat observer gain.

In the following section a parameter and structure identification

scheme for the above system is given. It is assumed that H matrix is equal

to the identity matrix, I. The generalization of this identification scheme to

the case with H * I is also possible 0.

Identification of Linear Models

The process of (_-cano.ical identification includes five steps. First, tile

observabillty indices, /zI. are determined. Second. the matrix A 0 is construct-
ed. Third, the measured outp.ts are transformed by the H matrix. Fourth,

the deadbeat observer gain, K, is estimated. Finally, the matrix B is estimat-

ed. This then yields the model for the process as

l_y(k - i)1_' Ai'I[K B] , for k > I_
_y(k) -- _ c o t_u(k i)j -I=!

(2s)

Identification of Piecewise Linear Models

The five step procedure is used to identify the open loop system

dynamics of the SSME at different power levels. The responses of the identi-

14



fied open loop system are compared wlth the responses obtained from the

nonlinear simulation. In general, it is observed that the gains for positive and

negative perturbation signals are significantly different. In order to compen-

sate for this phenomenon, a system gain with different values for positive and

negative perturbations is added to the llnearized model.

With this modification the system equations become

6x(k + 1) = A 6x(k) + B au*(k)
(29)

_y(k) : C 6x(k) (30)

,I,

where 6u (k) is defined component-wlse as

6us*

(SUl(k) > 0

for _ut(k ) _< 0

(31)

Results

Using the above procedure and the identification algorithm summarized

in this section, the parameters of the plecewise linear model described by

equations (34) to (36) are identified at 70, 80, g0, 100, and 110 percent power

levels. As mentioned earlier, the input vector, _u, represents the deviations of

the valve rotary motion from tile nominal values defined as:

(SU = [(_,8OPOV _FPOV IT
(32)

The output vector 6y represents the deviations of the chamber inlet pressure
and the mixture ratio from their nominal values and defined as:

_y = [6P c 6MR] T (33)

The A,B,C matrices and the nonlinear gains _1 and _2 of the identified
plecewlse linear model are given in Table II.

The validity of the estimated parameters of the system is checked by

comparing the responses obtained from the identified system with the re-

sponse of the nonlinear simulation. Both a state variable filter and the model

15



of the identified system are used for comparison purposes. The state variable

filter utilizes the measurements of both the output 6y, and the input, 6u, to

estimate the next value of the output, (_yf(k), defined as

, - i)

The model of the identified system utilizes only the measurement of the input

data, bu, to predict the output, aYm' and the state, _, as

_(k + 1) = A_(k) + O_u*(k) (35)

_Ym(k) = CSx(k) (36)

Two different test inpt,t signals are used for comparison purposes.

The first test input signal consists of two full length PRBS (different PRI3S

than the ones used for identification purposes) which cover the same frequen-

cy range as those used for identification. The second Lest signal consists of

step and ramp inputs and covers a lower frequency range than the range of

validity of Lhe identified system.

The comparison of the responses of both the identified model and the

filter to Lhe responses obtained from the nonlinear simulation of the SSME for

low frequency test signals also indicate good agreement.

VI. Fault Detection by Identification

A distributed model based fault detection and diagnosis system based

on an on-line recurslve versio, of the _-canonical identification method

presented above is described in this section. The process is assumed to be a

piecewise linear time invariant system described as:

X(" + _ T)=A(Xo)X(t _ +B(Xo) U (t) (37)

Y ('. + _ T} =C (Xo) X(_ + A T)

Where/_1T is the data sampling time and X o represents the state of the
selected operating point.

The piecewlse linear model with identified parameters is used as the a

priori knowledge of the diagnostic scheme. The basic architecture of this

diagnostic system 13 is described in Figure 12. It assumes that there are
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three failure mode classes to be identified: System Degradation, Actuator

Failure and Sensor Failure. It also assumes that within the neighborhood of

the operating condition, the major impact of a System Degradation is on

matrix A, actuator failures will be reflected by the changes of matrix B and

Sensor Failures can be related to C. In Figure 12, each condition monitor

module is constructed to detect a specific class of failure modes. For example,

an actuator failure detector is using the known information of A(Xo) and

C(Xo) to estimate the actuator matrix B and its structure. The estimated

parameters are then converted into a set of simple indicators for specific
failure modes within the class of actuator failure modes. The on-llne estimat-

ed model error is used as an indicator of the confidence level of the hypothesis

(i.e. the higher the model error the lower the confidence of the hypothesis).

The SSME (Space Shuttle Main Engine) actuator failure modes are used as

the example to demonstrate the feasibility of the approach. The results of the

study show that the simulated actuator failures can be correctly identified

within a reasonable time period.

Furthermore, if the system is to be operated over a wide range and a

linear model can not accurately represent the system characteristics then a

series of parameter identifications will be needed to cover the possible range of

operation conditions. A piecewise linear model which links all the operation

conditions can be described by:

x(, +1) = A(y,) x(n) + B(y.) u(n)

y(n) = C(yg) x(n)
(38)

where y, is the scheduling variable and is a subset of the output measurement

y.

A. Modelin E the Process Faults

In general, there are three classes of fault modes covered by the system

performance model of equation (1), namely actuator faults, sensor faults and

system performance degradation. I, this study, actuator faults are modelled

by the changes of actuation gain matrix B. Sensor faults are modelled by the

changes of observation matrix C. System performance degradations (dynamic

changes) are modelled by the system characteristic matrix A. Under these

assumptions, these fault modes can be isolated and diagnosed by analyzing

the observed behavior through hypothesis testing which will be described
latter.

For a complete model that describes all three possible classes of faults

the system equation will be:
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.x(,.+J) = (A + AA) x(n) + BF a Uc(n ) + Bfao (39)

y,r(n) = F,C x(n) ÷ f,o

We now define F, f,o' Fa' fao and AA as fault parameters. The s subscript
indicates sensor faults, the a subscript indicates actuator faults, F is a

multlpllcative error, f is a bias error, and tile z1A is the fault parameter that

indicates system degradation. The following section describes the strategy of

detecting the fault and estimating the fault parameters using a distributed on-

line parameter identification scheme.

B. Fault Detection and Diagnosis

In the fault-detectlon and diagnosis for the system modelled by (39),

one approach is to have an on-line estimation algorithm for all fault parame-

ters in the equation. The estimated fault parameters can be compared to the

predetermined signature of the fault modes of different classes. With this

approach it is difficult to estimate many fault parameters at the same time.

Also, the signatures of the fault parameters can be ambiguous if they were

estimated by a single module. Thus, instead of direct estimation of parameter

matrices A, B, C, and their related fault parameters, a two-step approach is

proposed. In the first step a group of "Hypothesis Testing Modules" (HTM)

are processed in parallel to test each class of faults. Each module is solely

designed to process the input/output data under a specified hypothesis and

generate the fault signature data for diagnostics purposes. The second step is

the fault diagnosis module which checks all the information obtained from the

HTM level, isolates the fault, and determines its magnitude. Figure 13

shows the structure of the fault detection and diagnostic system.

C. Application to the SSME

The signature of a fat,It mode can usually be obtained thro.gh the

analysis of physical properties or empirical data. in the Space Shuttle Main

Engine the commonly observed actuator faults can be classified into four

types: valve ball seal leakage or crack, valve line blockage, stuck valve and loss

of rotational variable displacement transformer (RVDT) signals 14. A ball

seal leakage may cause increased flow rate through the valve for tile same

actuator input, causing the fault vector parameter fao to have a nonzero
component associated with the faulty valve. The value of this nonzero

element yields the amount of leakage. A shaft seal leakage may cause a dia-

phragm rupttmre and consequently a stuck valve. This would cause those

elements of Fa and fao associated with the faulty valve to change from a value
of one to a value of zero and from a value of zero to a nonzero value respec-
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lively. A broken wire in the RVDT system may lead to a signal error, causing

the valve to continuously increase its opening until it is fully open. Table III

describes part of these fault signatures, i.e., it gives the values of the fault

parameters corresponding to each signature as well as the values for some
combinations of these faults.

A nonlinear simulation is used to simulate the SSME dynamic respons-

es for nominal operation and fault conditions. The inputs of the simulation

are the positions o| the oxidizer preburner oxidizer valve (OPOV), and fuel

preburner oxidizer valve (FPOV). The meas,Jred simulation outputs are the

chamber inlet pressure (Pc), mixture ratio (MR), high pressure fuel turbine

speed (SF2), and high pressure oxidizer turbine speed (SO2). The operating

condition selected for study is at 100% rated power level with nominal

mixture ration of 6.026. A closed loop control (PI controller) in the simulation

is also active to simulate the actual operation. The sampling time of the

system identification is 0.04 second. Pseudo random binary sequences

(PRBS) with a magnitude of 1% of the control command are superimposed

on the command signal. A recursive parameter identification scheme is used

to identify the fault parameters for the case where the OPOV fails.

Figure 14 shows a case in which the OPOV stl,ck at time of 1.0

second. In this case the valve stopped responding to the input command.

The expected parameter values for this type of fault are F || = O, Fa22 = 1,

los 1 -- Cblae (tile magnitude of bias depends on the valve stuck position and

the desired position of the operatillg condition) and f 2 = 0. Terminology

used to label fault parameters are Fa(1,1 ) = Fall, fao_l) = fao 1, etc. The

simulation shows that the diagnostic system is not only able to identify the

correct actuator fault type after the initial transient but also able to estimate

the magnitude of the bias due to the fault which can be very important in

designing the control accommodation for the fault. Figure 15 shows the on-

line calculated residual defined by equation (10) under the hypothesis of an

actuator fault. Values of the residual vector return to approximately zero after

the initial transient. Figure 16 shows the residual values calculated by the

module which hypothesizes system degradation faults. In this figure, the

residual vector elements are at least ten times higher than those in Figure 15.

Similarly large residual values were computed by the third module. It can be

seen that these values can be used to test the validity of the hypothesis
modules.

A second example is for a blaz in the Chamber Pressure (Pc) Sensor.

Figure |7 shows the results obtained for the case of a faulty sensor with a

bias of 1% on sensor one (chamber pressure). As expected, the results are

that the estimated fault parameters Fs _ I and the bias terms fso _ 0 except
fao | which is the indicator of Pc measurement bias.
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As illustrated in these sim.lation results, both the fatdt-detection and

the estimation of the extent of faults ca. be determined by using the proposed

approach. These simulations indicate that a duration of two seconds is suffi-

cient for the fault detection and diagnosis.

VII. Concluding Remarks

In this paper the a.thors have discussed the importance of propulsion

system identification as a tool to develop propulsion models for control design,

simulation, parameter estimation, and fault detection. The notion of propul-

sion system identification was defined in the context of the classical descrip-

tion of identification as a four step process. Propulsion system identification

was shown to be unique because of the special considerations of data and

error sources. Propulsion system models were described. Three model

formulations were described, nonlinear, bilinear, and pseudo-linear. The

dependence of system operation on the environment was described. Propul-

sion system simulation approaches were discussed because of the important

role that simulation plays in the controls design cycle. Finally, some ap-

proaches to propulsion system identification were explained with examples for

both air breathing and rocket systems. Three approaches were given,

linearlzation of simulation equations, closed-loop identification from test data,

and identification via canonical forms. Results of these approaches were

presented. Also presented was the use of an identification approach to detect

faults in a propulsion system.
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Model

I

Model data
source

Sfmulatfon

MVC test

80H test

Simulation

80M test

MVC test

Number
of data

points

400

2OO

200

400

200

2OO

Table I Identified model Parameter values

AI 81 CI QxIO 5

'-0.840 0 0

0 -.858 0
.382 -.120 -.396

-0.865 0 0

0 -.801 0

.368 -.124 -.344

-0.850 0 0

0 -.836 0
.379 -.119 -.346

-0.700 0 0

0 -.859 O

• 264 -.189 -.293

-0.670 0 0

0 -.818 0

.266 -.189 -.283

-0.728 0 0

0 -.808 0

.255 -.194 -.291

0.0405 0.0395 0.0005 -0.0032

•0235 .0102 .0006 .0029

.2133 -.3362 -.0026 -.0318

0.0405 0.0442 0.0029 -0.0002

.0318 .0088 -.0023 -.0002

.1937 -.3284 -.0672 -.0022

0.380 0.0405 0.0017 -0.0003

.0324 .0112 .0012 -.0004

.2092 -.3343 -.0221 .0155

0.0631 0.0769 -0.0032 0

.0245 .0110 0 0

.1862 -.5070 -.0338 -.0415

0.0378 0.0465 -0.0095 0

•0290 .0066 0 0

.1701 -.4981 -.0474 .0116

0.0508 0.0805 -0.0028 0

.3030 .0193 0 0

.1801 .4989 -.0842 -.0034

-0.970 0 0

0 -.978 0

.092 0 -.977

-0.951 0 0

0 -.960 0

.108 0 -.g71

-0.982 0 0

0 -.971 0

.SO6 0 -.974

-0.974 0 0
0 -.988 0

.060 0 -.960

-0.982 0 0

0 -.973 0

.048 0 -.965

-0.951 0 0

0 ,-.964 0
.059 0 -.958

Percent
error

0.225 0.056 -0.314 0.421

.056 .040 .171 .489

-.314 .171 4.486 .581

0.189 0.046 0.021 0.431

.046 .017 .064 .264

.021 .064 2.692 .894

0.189 0.046 0.021 0.I17

.046 .017 .064 .185

.021 .064 2.692 .524

Same as above

Same as above

Same as above

0.550

.469

.375

0.115

.205

.528

0.425

.275

.754
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Power

level,

percent

Table II

70 0 0 -0.2553

0 0 0.5044

1 0 1.0218

: 0 1 -0.7902

80 0 0 -0.1576

0 0 0.2587

1 0 0.8759

0 1 -0.5157

90 0 0 -0.1206

0 0 0.1434

1 0 0.8117

0 1 -0.4183

100 0 0 -0.1279

0 0 0.1994

1 0 0.7816

0 1 -0.5253

110 0 0 -0.084

0 0 0.1082

1 0 0.728

0 1 -0.4164

Identified values or system matrices

B C

0.0416

-0.1108

-0.113

0.5812

0.0257

-0.0545

-0.0666

0.4766

0.0155

-0.0275

-0.0478

0.4226

0.3923

1.0558

0.2584

0.5902

0.4068

0.9631

0.2574

0.6046

0.4223

0.9217

0.2518

0.6288

0.3534

0.6831

0.2007

0.5043

0.0212

-0.0508

-0.0565

0.475

0.0026 0.2416

-0.0123 0.5112

0.0181 0.1456

0.333 0.3593

l 2

0.0958

-0.2652 0 0 1 0 0.8957 0.8403

0.0788 0 0 0 1

-0.2697

0.1564

-0.674 0 0 1 0 1.1211 0.9279

0.0384 0 0 0 1

-0.2307

0.1546

-0.7302 0 0 1 0 0.9386 0.7699

0.021 0 0 0 1

-0.1779

0.0475

-0.6446 0 0 1 0 0.8594 0.9047

-0.0181 0 0 0 1

-0.1387

0.0786

-0.575 0 0 1 0 0.9704

-0.0243 0 0 0 1

-0.078

1.1231

Table III SSME Actuator Fault Signatures
ACTUATION FAULT PARAMETERS
FAILURE MODE Fal 1" Fa22 faol °* fao2

NORMAL 1 1 o o
.............................................................. •4 4 -_ -4

OPOV VALVE BALL SEAL LEAKAGE 1 1 C t 0

FPOV VALVE BALL SEAL LEAKAGE 1 1 0 C
2

FPOV and OPOV VALVE BALL 1 1 C 1 C 2
SEAL LEAKAGE

OPOV BLOCKAGE 1 1 - C 1 0

FPOV BLOCKAGE 1 1 0 - C 2

OPOV VALVE BALL SEAL LEAKAGE 1 1 - C 1 - C 2
FPOV BLOCKAGE

OPOV VALVE STUCK 0 1 C 1 0

FPOV VALVE STUCK 1 0 0 C 2

OPOV A FPOV VALVE STUCK 0 0 C 1 C 2

OPOV RVDT FAILURE 0 1 C 1 0

FPOV RVDT FAILURE 1 0 0 C 2

OPOV and FPOV RVDT FAILURE 0 0 C 1 C 2

Fal 1 Indicates the 1,1 element of the Fa matrix

"" faol indicates the 1st element of the fao vector

+ C l& C 2represent the bias terms
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